100 Gb/s RF Backbone (100G)

Modern expeditionary military missions generate and exchange massive amounts of data that are used to produce situational awareness and guide decision-making. Much of the data must travel long distances along backbone communications networks composed of high-capacity links that connect command centers. While optical fiber services can provide a multi-gigabit data backbone in many parts of the world, modern expeditionary forces require a similar capability in places where fiber access does not exist. Satellite Communications (SATCOM) services can provide some capacity to remote areas but cannot provide the capacity needed to support the amount of data generated by emerging ISR systems. The 100G program is developing the technologies and system concepts to project fiber-optic-class 100 Gb/s capacity via airborne data links anywhere within the area of responsibility (AOR).

현대 expeditionary 군 임무는 많은 양의 데이터를 생산하고 교환하는데, 이것은 상황 인지능력과 결정에 있어 가이드를 제시해준다. 많은 양의 데이터는 높은 용량의 링크로 이루어진 지휘본부 backbone 통신 네트워크를 통해 장거리를 이동해야만 한다. 광섬유 서비스가 세상의 많은 부분을 멀티-기가비트 데이터 backbone을 제공해줄 수 있는 반면에 현대의 expeditionary forces는 fiber access가 더 이상 없는 지역과 비슷한 용량을 필요로 한다. Satellite Communications (SATCOM) 서비스는 먼 지역에 일부 용량을 제공할 수 있지만, ISR 시스템이 대두됨으로 인해 나오는 데이터 량을 서포트하기 위한 용량은 제공하지 못한다. 100G 프로그램은 AOR(Area of responsibility) 어디에서나 공중에 떠있는 데이터 링크를 통해 100Gb/s 용량의 광섬유-클래스를 목표로 할 수 있는 기술과 시스템 컨셉을 개발한다.

The 100G program is exploring high-order modulation and spatial multiplexing techniques to achieve the 100 Gb/s capacity at ranges of 200 km air-to-air and 100 km air-to-ground from a high-altitude (e.g., 60,000 ft./18 km) aerial platform. The program is leveraging the characteristics of millimeter wave (mmW) frequencies to produce spectral efficiencies at or above 20 bits-per-second per Hz. Computationally efficient signal processing algorithms are also being developed to meet size, weight and power (SWaP) limitations of host platforms, which will primarily be high-altitude, long-endurance aerial platforms.

High-order modulation and spatial multiplexing technologies were developed in Phase 1 of the 100G program. The technologies are scheduled to be integrated into a 100 Gb/s system in Phase 2, followed by flight testing in Phase 3.